Student Technical Paper
Technical Paper
Debugging SDN in HPC Environments
Event Type
Student Technical Paper
Technical Paper
Facilitation Tags
HPC Facilitation
Technical Paper Tags
Technical Paper
Student Technical Paper
TimeTuesday, July 2411am - 11:15am
DescriptionHPC networks and campus networks are beginning to leverage various levels of network programmability ranging from programmable network configuration (e.g., NETCONF/YANG, SNMP, OF-CONFIG) to software-based controllers (e.g., OpenFlow Controllers) to dynamic function placement via network function virtualization (NFV). While programmable networks offer new capabilities, they also make the network more difficult to debug. When applications experience unexpected network behavior, there is no established method to investigate the cause in a programmable network and many of the conventional troubleshooting debugging tools (e.g., ping and traceroute) can turn out to be completely useless. This absence of troubleshooting tools that support programmability is a serious challenge for researchers trying to understand the root cause of their networking problems.
This paper explores the challenges of debugging an all-campus science DMZ network that leverages SDN-based network paths for high-performance flows. We propose Flow Tracer, a light-weight, data-plane-based debugging tool for SDN-enabled networks that allows end users to dynamically discover how the network is handling their packets. In particular, we focus on solving the problem of identifying an SDN path by using actual packets from the flow being analyzed as opposed to existing expensive approaches where either probe packets are injected into the network or actual packets are duplicated for tracing purposes. Our simulation experiments show that Flow Tracer has negligible impact on the performance of monitored flows. Moreover, our tool can be extended to obtain further information about the actual switch behavior, topology, and other flow information without privileged access to the SDN control plane.